1. A and B are the midpoints of two adjacent sides in the rectangle below. What fraction (in lowest terms) of the rectangle is shaded?

\qquad 1
2. What is the positive difference between the mean and the median of the set of numbers below?

$$
\{-10,-4,-2,0,2,4,150\}
$$

3. In the diagram below, the fuel consumption of five cars are $14,10,12,6$, and 8 Litres $/ 100 \mathrm{~km}$ as shown.
What is the average consumption (of fuel per car)
of the five cars in L / km ?
Provide your answer as a common fraction in lowest terms.

\qquad
4. Consider the following sequence: 1 (sum of the factors of 1), 3 (sum of the factors of 2), 4 (sum of the factors of 3), 7 (sum of the factors of 4), 6 (sum of the factors of 5), ...
What is the sum of all the terms that each has value less than 15 ?
5. $\quad N>200$ is a perfect square.

What is the smallest possible value of N ?
6. 100 hungry students eat together 225 pizza slices.
N of them ate one slice, $N+30$ ate two slices, and the rest ate three slices.
What is the value of N ?
7. $X Z=3, Y Z=2$, and $X Y=5$ are all diameters of the 3 circles in the figure below.
What percentage of the large circle is shaded?

8. $\quad A, B, C, D$, and E are different even numbers between 1 and 11 . Find the smallest possible positive integer value of $\frac{(A+B)(C-D)}{E}$.

Grade Five (5) Division
9. Leonard's clock runs 3 minutes faster every day.

If he wants to have the correct time at exactly 8:00 AM tomorrow, how many minutes should he set his clock back today at 4:00 PM? \qquad
10. A group of 5 students won a prize: Alfie got $\$ 300$, Betti got $\frac{1}{3}$ of the total prize, Charlie got 50% of what Betti got, Dalton got twice as much as Alfie, and Erin got $\frac{5}{12}$ of the prize.
How many dollars was the prize?
11. The shaded region is a regular hexagon enclosed inside another regular hexagon $A B C D E F$.
The perimeter of the shaded area is 12 .
What is the value of $A F$?
Express your answer as $m \sqrt{n}$ where m and n are primes.

